123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # -*- coding: utf-8 -*-
- # @Author : relakkes@gmail.com
- # @Time : 2023/12/2 12:55
- # @Desc : 滑块相关的工具包
- import os
- from typing import List
- from urllib.parse import urlparse
- import cv2
- import httpx
- import numpy as np
- class Slide:
- """
- copy from https://blog.csdn.net/weixin_43582101 thanks for author
- update: relakkes
- """
- def __init__(self, gap, bg, gap_size=None, bg_size=None, out=None):
- """
- :param gap: 缺口图片链接或者url
- :param bg: 带缺口的图片链接或者url
- """
- self.img_dir = os.path.join(os.getcwd(), 'temp_image')
- if not os.path.exists(self.img_dir):
- os.makedirs(self.img_dir)
- bg_resize = bg_size if bg_size else (340, 212)
- gap_size = gap_size if gap_size else (68, 68)
- self.bg = self.check_is_img_path(bg, 'bg', resize=bg_resize)
- self.gap = self.check_is_img_path(gap, 'gap', resize=gap_size)
- self.out = out if out else os.path.join(self.img_dir, 'out.jpg')
- @staticmethod
- def check_is_img_path(img, img_type, resize):
- if img.startswith('http'):
- headers = {
- "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;"
- "q=0.8,application/signed-exchange;v=b3;q=0.9",
- "Accept-Encoding": "gzip, deflate, br",
- "Accept-Language": "zh-CN,zh;q=0.9,en-GB;q=0.8,en;q=0.7,ja;q=0.6",
- "AbstractCache-Control": "max-age=0",
- "Connection": "keep-alive",
- "Host": urlparse(img).hostname,
- "Upgrade-Insecure-Requests": "1",
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) "
- "Chrome/91.0.4472.164 Safari/537.36",
- }
- img_res = httpx.get(img, headers=headers)
- if img_res.status_code == 200:
- img_path = f'./temp_image/{img_type}.jpg'
- image = np.asarray(bytearray(img_res.content), dtype="uint8")
- image = cv2.imdecode(image, cv2.IMREAD_COLOR)
- if resize:
- image = cv2.resize(image, dsize=resize)
- cv2.imwrite(img_path, image)
- return img_path
- else:
- raise Exception(f"保存{img_type}图片失败")
- else:
- return img
- @staticmethod
- def clear_white(img):
- """清除图片的空白区域,这里主要清除滑块的空白"""
- img = cv2.imread(img)
- rows, cols, channel = img.shape
- min_x = 255
- min_y = 255
- max_x = 0
- max_y = 0
- for x in range(1, rows):
- for y in range(1, cols):
- t = set(img[x, y])
- if len(t) >= 2:
- if x <= min_x:
- min_x = x
- elif x >= max_x:
- max_x = x
- if y <= min_y:
- min_y = y
- elif y >= max_y:
- max_y = y
- img1 = img[min_x:max_x, min_y: max_y]
- return img1
- def template_match(self, tpl, target):
- th, tw = tpl.shape[:2]
- result = cv2.matchTemplate(target, tpl, cv2.TM_CCOEFF_NORMED)
- # 寻找矩阵(一维数组当作向量,用Mat定义) 中最小值和最大值的位置
- min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
- tl = max_loc
- br = (tl[0] + tw, tl[1] + th)
- # 绘制矩形边框,将匹配区域标注出来
- # target:目标图像
- # tl:矩形定点
- # br:矩形的宽高
- # (0,0,255):矩形边框颜色
- # 1:矩形边框大小
- cv2.rectangle(target, tl, br, (0, 0, 255), 2)
- cv2.imwrite(self.out, target)
- return tl[0]
- @staticmethod
- def image_edge_detection(img):
- edges = cv2.Canny(img, 100, 200)
- return edges
- def discern(self):
- img1 = self.clear_white(self.gap)
- img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
- slide = self.image_edge_detection(img1)
- back = cv2.imread(self.bg, cv2.COLOR_RGB2GRAY)
- back = self.image_edge_detection(back)
- slide_pic = cv2.cvtColor(slide, cv2.COLOR_GRAY2RGB)
- back_pic = cv2.cvtColor(back, cv2.COLOR_GRAY2RGB)
- x = self.template_match(slide_pic, back_pic)
- # 输出横坐标, 即 滑块在图片上的位置
- return x
- def get_track_simple(distance) -> List[int]:
- # 有的检测移动速度的 如果匀速移动会被识别出来,来个简单点的 渐进
- # distance为传入的总距离
- # 移动轨迹
- track: List[int] = []
- # 当前位移
- current = 0
- # 减速阈值
- mid = distance * 4 / 5
- # 计算间隔
- t = 0.2
- # 初速度
- v = 1
- while current < distance:
- if current < mid:
- # 加速度为2
- a = 4
- else:
- # 加速度为-2
- a = -3
- v0 = v
- # 当前速度
- v = v0 + a * t # type: ignore
- # 移动距离
- move = v0 * t + 1 / 2 * a * t * t
- # 当前位移
- current += move # type: ignore
- # 加入轨迹
- track.append(round(move))
- return track
- def get_tracks(distance: int, level: str = "easy") -> List[int]:
- if level == "easy":
- return get_track_simple(distance)
- else:
- from . import easing
- _, tricks = easing.get_tracks(distance, seconds=2, ease_func="ease_out_expo")
- return tricks
|